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ANALYSIS OF THE HYDRODYNAMIC INTERACTION BETWEEN
CASCADES OF THIN PROFILES TAKING ACCOUNT CF VORTEX
WAKE EVOLUTION

R, L, Kulyaev o UDC 532.582.2

The papers [1-5] are devoted to an investigation of aspects of the hydrodynamic interaction of
cascades of profiles in a nonlinear formulation: it is shown experimentally in [1] and theoreti~
cally in [2] that the free vortex sheet ruptures upon meeting a profile; taking account of the evo-
lution of vortex wakes, the flows around two cascades of solid profiles of infinitesimal [3] and
finite [4] density are computed; results of an experimental investigation of the dynamic reactions
of the flow on two mutually moving cascades of thin profiles are presented in [5], The interfer-
ence between two cascades of thin pi*ofiles in an inviscid, incompressible fluid flow is examined
in this paper, where a modified method from [6] is used.

§1. Undetached flowaround two cascades of thin profiles by an inviscid incompressible fluid is considered
in the plane of the x, y Cartesian coordinates, The y axis is directed along the front of the cascades. The
left cascade is assumed fixed, while the right cascade moves along the y axis at the velocity u = const. The flow
outside the profiles and their shed vortex wakes are assumed potential, the cascade spacings are identical, the
profiles are rigid, and the influence of the wake and profile thicknesses is negligible.

Under the assumptions made, the flow velocity V = (Vg, Vy) satisfies the equations

divV=0,r0t V=0, (x, y) & L; @.1)

the periodicity condition
V(‘Zy Yy +h’1 t) - V(xy U, t) (]_.2)

and the following boundary conditions:

nonpenetratipn of the fluid th'rough the profile of the cascades
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Fig. 1

Vov = Spouev, (2, Y) E Lpn, k=1, 2; (1.3)

nonpenetration of the fluid through the vortex wakes

Vov = Vyv, (2, ) € Ly; (1.4)

continuity of the pressure during passage through the wake

[pl1 =10, (z, y) & Ly; (1.5)

continuity of the pressure at the trailing edges of the profiles (Kutta— Zhukovskii condition)
1 =0, (z, ¥) = (ze) Ye)s (@, ¥) E L, (ze) Y)SE; (1.6)
damping of the perturbed flow velocity infinitely far in front of the cascades

lim V(x, y, ) = V. (1.7)
Here t is the time; h is the cascade spacing; Lp; and Lp, are the contours of the fixed and mobile cascades,
respectively (Fig. 1); Lp = Lpy + Lpg; Ly = Ly + Lyy; Lyy and Ly, are the contours of the vortex wakes
shed from Lp; and Lpz’ respectively; L = Lp + Lys v is the unit normal to Ly u = (0, u); 6k, is the Kronecker
delta; Vy is the displacement velocity of the line Ly; p is the hydrodynamic pressure; Ep is the set of profile
trailing edges; and Vj = (Vy, Viy) = const.

At the initial instant it is assumed that there are no vortex wakes and the cascade configuration is given:
L’t:o = L1;|t=0 = Lpo~ 1.8)

The problem (1,1)-(1.8) is nounlinear, since the contour Lw(t) is not known in advance,

§2. Let Ok be some profile of the k-th cascade, selected as the initial cascade; let L[\);vk be the contour
of the wake shed from L%k (k =1, 2). Let us introduce the quantity v = (v, vy) by means of the equality

55,0 = Va5 [ v, 01 eth 18 (s.0) — (0, 0]} doy @.1)
LO

where V= vy=ivy; v, = Vix~iViyi s, o is the arc abscissa, LY = L%i + Lopz + L“’m + Lgvz; v is the vortex layer
intensity, ¢ = £ +in is a complex coordinate of a point of the contour I, and the integral is understood in the
Cauchy principal value sense, Taking account of (2.1), the problem (1.1)~(1.8) reduces, by analogy with [6], to

a problem in the function + on the contour L° and in the function ¢ on the contour LY, = LY, + LY. It is hence
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assumed that each point of an arbitrary element (o'(t), o "(t)) of the contour L‘"N moves at the velocity v, and
the total vortex intensity on the element remains unchanged:
o"(t)

\ v (0, t) do = const.
o;tl)

(2.2)
Then the intensity of the free vortices shed from the contour L° = Lpi Lg)z is expressed by the formula

Y= — o j ¥(6, 1) do, 2.3)

where ] is the length of the contour L%k; o is measured from the profile leading edge; w is the relative veloc-
ity of free vorticesbeing shed from the profile determined by the equality

w(s, ) = Re{vdf/ds} — Suoudn/ds, k=1, 2. . (2.4)

Taking account of (2.1), condition (1.3) becomes
Im{00/ds} = — yudklos, k = 1, 2. (2.5)
The initial condition can be written as |
Lieg = LY 1m0 = L. (2.6)

Let us note that compliance with the boundary conditions (1.3), (1.4) and (1.5), (1.6) follows, respectively, from
{2.5), (2.1) and (2.2), (2.3), and (2.4), but (1.1) and the conditions (1.2), (1,7) are automatically satisfied because
of replacement of the contour Lo by a vortex layer. Starting from this, let us henceforth consider the problem
(2.1)-(2.6) of motion of the vortex layer L°,

§3. The algorithm in [6] is used for the numerical solution of the problem (2.1)~(2.6). This algorithm is
based on linearizing the problem in a small-neighborhood of each time and approximating the vortexlayer by a
system of discrete vortices. In addition, the following factors are taken into account in the algorithm.

Selection of the Time Spacing. At. The spacing At in [6] satisfies the condition

At = IJ(wN), 3.1)

where N is the number of vortices per profile, Condition (3.1) assures the uniformity of the vortex distribution
in the neighborhood of the profile trailing edge. In the problem under consideration the spacing At is given as
constant beforehand, since condition (3,1) cannot be satisfied simultaneously in both cascades. The selection
of the constant At resultsin some error in the determination of the vortex intensity on the profile and its shed
free vortex.

A numerical investigation of the factors on which the magnitude of these errors depends would result in
the following, In the neighborhood of the profile trailing edge the relative error €y in determining the vortex
intensity depends for N = 20 on just the dimensionless parameter 1 = ] /(wWNA?Y) and the vortex number, in prac-
tice, This error should not be neglected if 7 = 1. For example, for 7 = 1/4; 1/2; 1; 2; 6 the quantity &y for
a free vortex has the respective values —0.63; —0.28; 0.00; 0.18; 0.36. In conformity with this, the vortex in-
tensity at each time is calculated formally by the method in [6] at the beginning by ignoring condition (3.1).
Then the parameter 7 and its corresponding quantity &, are determined and the errors are eliminated.

Passage of the Second Cascade Lpz through the Wake Lys from the First Cascade. It has been shown
experimentally in [1] and theoretically in [2] that the ends of the parts of the vortex wake slit by the profile
diverge, Then the intensity of the free vortices at contiguous points of the wake and the profile should be zero
(otherwise, the velocity of the motion of these points turns out to be infinite, which has no physical meaning).
Hence, sections of the wake Ly, located in a small neighborhood of the cascade profile I—pz can be neglected
because of the low intensity of the free vortices in these sections, Now, the method in [6] can be used fo solve
the problem by taking into account that the system of discrete vortices yields a satisfactory approximation to
the velocity field of the vortex layer only at a sufficient distance away. In conformity with this, the discrete
vortices modeling the wake Ly arenotpermitted to approach the profiles of the cascade Lp2 to adistance less than
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wnl/N. The parameter » is selected from a numerical experiment in such a way that the hydrodynamic reac-
tions of the stream on the profile L%z were calculated with minimum error (usually 1 =< » = 2), The errors
mentioned are minimal if the results of a duplicate computation of the problem with twice the number of vor-
tices on the profiles of both cascades and with half the time spacing are similar to those obtained initially.
Failure of the procedure described above (which corresponds to the value » = 0) ordinarily results in passage
of the free vortices through the profile L°p2.,

Results of a computation of the interference between cascades are presented for two cases as an illus-
tration, Common to both is the fact that the contours 01 and L%,Q are rectilinear, and the profile chords coin-
cide with the cascade spacing b; = by = h (Fig. 1). The problem is considered in both the nonstationary formula-
tion (2.1)-(2.6) and in the quasistationary formulation (without taking account of vortex wakes). The quantities
Pyk and qu denote the nonstationary and quasistationary resultant normal pressure forces of the stream on
the profile Lok, respectively; Ny is the number of discrete vortices modeling ka (k =1, 2). The quantities
h/u and phu?, respectively, are taken as the unit of time and force (o is the fluid density).

1. The cascade stagger angles are 8, = n/4, 8; = —n/4, the gap between the cascades is A = 0,1 h, the
velocity is V, = (0.7u cos 40°, 0.7u sin 40°), the time spacing is At = 1/32, and the parameters are Ny = 20, N, =
40, n =1. The computed shape of the vortex wakes presented in Fig, 1 for the time t = 3 indicates that the
wake of the first cascade Ly, experiences tension and strain near the profiles of the second cascade, while the
wake Lyy is practically without strain, The ends of the slit parts of the wake Ly, diverge. The described
singularities of the vortex wake motion agree with [1-4].

The time dependence of the nonstationary Pyk and quasistationary Pqk forces is presented in Figs, 2 and
3. The behavior of these forces differs noticeably, especially on the second cascade. It should be noted that
an analogous variant of the interference between cascades consiting of symmetric 5% thick solid profiles has
been computed in [4], It is indicated in that paper that the mean value of the quantities | Py | and [Pyy| per
period is 0.07247 and 0.07154, respectively. These data do not agree satisfactorily with Figs, 2 and 3,

2. The stagger angles are B; = 0, 8; = — 7 /6, the gap is A = 0,2h, the velocityis V; = (7.536u, 0.129u);
the time spacing is At =1/64, and the parameters are N; = N, = 20, » = 1. In this case, the contrast in the
behavior of the nonstationary and quasistationary reactions is negligible (Figs, 4 and 5). Upon comparing
Figs. 3 and 5, the importance of the dimensionless parameter u/Vix, the analog of the Strouhal number in this
problem, becomes clear°

The author is grateful {o D, H, Gorelov for discussing the research,
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BOUNDARY LAYER ON A ROTATING CYLINDER IN AXIAL FLOW

G, V., Petrov UDC 532.526

A semiinfinite hollow cylinder of radius R is rotating about its own axis at an angular velocity v, and an
incompressible liquid flows around it in uniform flow at a velocity 1,. The flow is assumed to be laminar and
axisymmetrical, The variables

s = B& m = (* — R*)/2ER";
= P/utR:; w= w*/(GR; P = (p* — p)lpul @
are used to solved the problem, where

t =V (valus)/R; B = (0R/ux); 2)

¢ and 5 are analogous to the variables proposed in [2] for the case of a nonrotating cylinder; y is the stream
function, which is defined by the relations u* = yy/r and v* = — ¢ /r; x is the distance from the origin of the
cylinder along the generating line; r is the distance to the axis of the cylinder; u*, v*, and w* are the longi-
tudinal, radial, and circumferential components of the velocity; p* is the pressure; p,, is the pressure in the
advancing flow; p is the density of the liquid; and p is the kinematic modulus of viscosity. From here on an
independent variable which appears as a subscript denotes differentiation with respect to it, The relation u*/
U =U = ¢p.is valid for the longitudinal velocity component,

In the dynamical equations, terms of the order (Re®)™! = ,/u_x are discarded, i.e., an approximation to
the boundary layer is used,

2(0Qnn)n + OPqn + NPy — 3P, = (PyPrs — CPyn);
2(01.0“)“ + q"w'n _‘" (E/G)((P - ﬂ(Pn _lr' S, — 2§)w == S((ins - (stn)i (3)
Dy = suw?lo, 0 = 1 4 2&n. ’

The flow around the exterior surface is investigated, and the boundary conditions are of the form

@ =(p=0,w=iwhenn=0;
! 4)

(p“:-.O,w=p=0 as 7 —» oo,

The case in which the ratio of the thickness of the boundary layer to the radius of the cylinder is small,
i.e., £ «1,is of special interest, A limiting transition is possible in Egs. (3) as £ — 0 (or as 8 — )

2@nun T $Qqn T NPy — 5P = PPy, — PsCnn);
zwm’l -+ Qwy = S((P’nws - (Pswﬂ)! Py = swi. (5)
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